
The Performance of SQL-on-Hadoop Systems: An Experimental Study

Xiongpai Qin, Yueguo Chen*, Jun Chen, Shuai Li, Jiesi Liu, Huijie Zhang
School of Information, Renmin University of China,

and Key Lab. of Data Engineering and Knowledge Engineering, MOE, China
(Corresponding author e-mail: chenyueguo@ruc.edu.cn)

Abstract—Hadoop is now the de facto standard for storing
and processing big data, not only for unstructured data but
also for some structured data. As a result, providing SQL
analysis functionality to the big data resided in HDFS becomes
more and more important. Hive is a pioneer system that
supports SQL-like analysis to the data in HDFS. However, the
performance of the early-version of Hive is not satisfactory.
This leads to the quick emergence of dozens of SQL-on-
Hadoop systems that try to support interactive SQL query
processing to the data stored in HDFS. This paper firstly gives
a brief technical review on recent efforts of SQL-on-Hadoop
systems. Then we test and compare the performance of three
representative SQL-on-Hadoop systems, based on the TPC-
H benchmark. According to the results, we show that such
systems can benefit more from applications of many parallel
query processing techniques that have been widely studied in
the traditional massively parallel processing databases.

Index Terms—big data, SQL-on-Hadoop, benchmark

1. Introduction

Since introduced by Google in 2004, MapReduce [2] has
become a mainstream technology for big data processing.
Hadoop is an open-source implementation of MapReduce. It
has been used in various data analytic scenarios such as web
data search, reporting and OLAP, machine learning, data
mining, information retrieval, and social network analysis
[3], [4]. Researchers from both industry and academia [3]
have made much effort to improve the performance of
the MapReduce computing paradigm from many aspects,
such as optimization and indexing support of the storage
layout [5], extension to streaming processing and iterative
style processing [10], optimization of join and deep analysis
algorithms, easy-to-use interfaces and declarative languages
support [6], energy saving and security guarantee [1] etc.
As a result, Hadoop becomes more and more mature.

Hadoop is basically a batch-oriented tool for process-
ing a large volume of un-structured data. However, as the
underlying storage model is ignored by the Hadoop frame-
work, when some structured layout is applied to the HDFS
(Hadoop Distributed File System) data blocks, Hadoop can
also handle structured data as well [5]. Apache Hive [6]
and its HiveQL query language have become a SQL-like
interface for Hadoop since introduced by Facebook in 2007.

Some researchers have compared Hadoop against
RDBMS [7], and they concluded that Hadoop is much
inferior in terms of structured data processing. However, the
situation has been changing recently. Traditional database
vendors, startups, as well as some researchers are trying to
transplant SQL functionalities onto the Hadoop platform,
and providing interactive SQL query capability with a re-
sponse time of tens of seconds or even seconds. If the goal
is accomplished, Hadoop will be not only a batch-oriented
tool for exploratory analysis and deep analysis, but also a
tool for interactive ad-hoc SQL analysis of big data. For
example, Hive has been recently improved in the following
ways: 1) It supports a columnar data layout called ORC
file, in which data can be compressed to save storage space
and I/O bandwidth. 2) Multiple MapReduce Jobs can be
bundled in a single Tez Job, which reduces the need to
write intermediate results to disks. 3) A cost based optimizer
has been embedded into Hive/Tez to select the best plan
for queries. The optimizer and vectorized query execution
strategy improve query performance significantly.

In 2012, Floratou et al. [8] compared Hive against a
parallel database from Microsoft - SQL Server using the
TPC-H benchmark. The results show that SQL Server is
always faster than Hive for all TPC-H experiments at the
four scale factors. The average speedup of SQL Server over
Hive is larger when the dataset is smaller. For example,
they see a 34.1X speedup for the 250GB dataset. They find
some reasons why Hive is inferior to SQL Server: 1) The
RCFile format is not efficient enough as a storage layout for
analytic tasks. 2) SQL Server uses cost based optimization
techniques to select the best query plan, which minimizes
network transfers by avoiding shuffling large tables when
necessary. SQL Server chooses to repartition intermediate
tables for subsequent join operations in the whole query plan
to get executed locally. Sometimes SQL server selects to
replicate a small table and performs the join operation with
the partitioned large table locally. Comparatively, the Hive
version they used does not apply any cost based techniques
to optimize query plans. It blindly redistributes both tables
of join and perform a join in the reduce phase. Open source
community has improved Hive much more from then, which
leads to higher performance that can be seen from our
benchmark results.

In 2014, Floratou et al. [9] did another experimental
study: comparing Hive against Impala using a TPC-H like

2017 IEEE 6th International Congress on Big Data

978-1-5386-1996-4/17 $31.00 © 2017 IEEE

DOI 10.1109/BigDataCongress.2017.68

464

benchmark and two TPC-DS inspired workloads. The results
showed that Impala is 3.3X to 4.4X faster than Hive on
MapReduce (Hive-MR) and 2.1X to 2.8X faster than Hive
on Tez (Hive-Tez) for the TPC-H experiments. After break-
ing the time down to phases for queries, they concluded
that the reasons of performance advantages of Impala over
Hive include: 1) Impala launches a set of scanner and reader
threads on each node, which enables impala to efficiently
fetch and process the bytes read from disk. 2) Runtime code
generation of Impala also contributes to the performance
gap. 3) Impala uses a pipelined query execution strategy like
that of a shared nothing parallel database, which improves
query performance much. 4) Hive-MR pays the overhead
of scheduling and intermediate data materialization that
the MapReduce framework imposes. 5) Both Hive-MR and
Hive-Tez are CPU-bound during scanning, which negative-
ly affects their performance. 6) Hive-MR uses correlation
optimization to avoid redundant scans. Hive-Tez avoids
the task startup, scheduling and materialization overheads
of MapReduce. However, at that time, these optimizations
are not enough for them to compete with Impala. In our
experiments, we use Hive-Tez, which incorporates more new
features such as cost based query optimization, vectorized
query execution etc.

The past three years witnessed the fast development of
SQL-on-Hadoop systems. Many SQL-on-Hadoop systems
adopt the robust and mature cost based optimization and
sophisticated query execution techniques of parallel RDBM-
S to improve their query performance. This motivates us
to conduct an experimental study, to investigate how much
they benefit from the introduction of database techniques.
We firstly reviews various SQL-on-Hadoop systems from a
technical point of view. Then we test and compare the per-
formance of three representative SQL-on-Hadoop systems,
based on the TPC-H benchmark. By comparing the results,
strengths and limitations of the systems are analyzed. We
try to identify some important factors and challenges in
implementing a high performance SQL-on-Hadoop system,
which could guide the effort to improve current systems.
The paper extends our previous benchmarking work [27] by
testing new-version systems using the TPC-H benchmark,
and analyzing the details of query processing pipelines to
generate deeper insights of the system performance.

2. SQL-on-Hadoop Systems

2.1. Why transplant SQL onto Hadoop?

There are so many RDBMS systems in the market that
support data analysis with SQL and provide interactive
responsibility. Why bother to transplant SQL onto Hadoop to
provide the same function? The reasons may be as follows.

First, SQL-on-Hadoop systems are cost-effective.
Hadoop can run on large clusters of commodity hardware
to support big data processing. SQL-on-Hadoop systems are
more cost efficient than MPP (massively parallel processing)
database options such as TeraData and Netezza, which need

to run on expensive high end servers and don’t scale out to
thousands of nodes.

Second, they can achieve high I/O bandwidths. When
the volume of data is really big, only some portion of data
can be loaded into main memory, the remaining data has
to be stored on disks. Spreading I/Os to a large cluster is
one merit of the MapReduce framework, which also justifies
SQL-on-Hadoop systems.

Third, they support complex analytics. SQL-on-Hadoop
systems not only provide SQL query capability, but also
provide machine learning and data mining functionalities,
which are directly executed on the data, just like what has
been done in BDAS (Berkeley Data Analytics Stack) [10].
Although RDBMSs also provide some form of in-database
analytics, Hadoop-based systems however, can offer more
functions, such as graph data analysis.

Fourth, people are getting more and more interested in
analysis of multi-structured data together in one place for
insightful information. Hadoop has been the standard tool
for unstructured data processing. If structured data process-
ing techniques are implanted onto Hadoop, all data could
be in one place. There is no need to move big data around
across different tools. SQL layer will empower people who
are familiar with SQL and have a big volume of data to
analyze.

2.2. An Overview of SQL-on-Hadoop Systems

Systems coming from open source communities and
startups include Hive, Stinger, Impala, Hadapt, Platfora,
Jethro Data, HAWQ, CitusDB, Rainstor, MapR and A-
pache Drill, etc. HiveQL language has become the standard
SQL interface for Hadoop in many SQL-on-Hadoop sys-
tems such as Apache Hive. Some works [11], [12] have
been done on translating SQL into MapReduce jobs with
some optimizations. Stinger [13] is an initiative of Hor-
tonWorks to make Hive much faster. Impala [14] uses its
own processing framework to execute queries, bypassing
the inefficient MapReduce computing model. Hadapt is the
commercialized version of the HadoopDB project [15], by
combining PostgreSQL and Hadoop together, it tries to
retain high scalability and fault tolerance of MapReduce
while leveraging the high performance of RDBMS when
processing both structured and un-structured data. Platfora
is a fast in memory query engine that rolls up raw data of
Hadoop and caches the aggregates in memory. Jethro Data
[16] uses indexes to avoid full scan of the entire dataset.
EMC Greenplum’s HAWQ [17] uses various techniques
such as query optimization, in memory data transferring,
data placement optimization, to boost the performance. Citus
Data’s CitusDB [18] extends HDFS in the Hadoop system
by running a PostgreSQL instance on each data node, which
could be accessed through a wrapper. Rainstor [19] provides
compression techniques instead of a fully functional SQL-
on-Hadoop system. Compression can reduce the data space
used by 50X, which leads to a rapid response time. Apache
Drill [20] has been established as an Apache incubator

465

project, and MapR is the most involved startup in the de-
velopment of Drill. Columnar storage and optimized query
execution engine help to improve their query performance.

Systems from traditional database vendors include Mi-
crosoft PolyBase, TeraData SQL-H, Oracle’s SQL Connec-
tor for Hadoop. PolyBase [21] uses a cost based optimizer to
decide whether offloading some data processing tasks onto
Hadoop to achieve higher performance. TeraData SQL-H
[22] and Oracle’s SQL Connector for Hadoop [23] enable
users to run standard SQL queries on the data stored within
Hadoop through the RDBMS, without moving the data into
RDBMS. Systems from academia include Spark/Shark [24]
and Hadoop++/HAIL [25]. Shark [24] and its extension
Spark SQL [26] are large-scale data warehouse systems built
on top of Spark. By using in memory data processing they
achieve higher performance than Hive. Hadoop++ and HAIL
[25] improve Hadoop performance by optimizing Hadoop
query plan, creating indexes, and co-locating data that will
join together later during data loading.

2.3. Benchmarked Systems

We choose three representative systems of the above
systems for our benchmarking study: Hive, Impala, and
SparkSQL.

2.3.1. Hive. Apache Hive is a data warehouse software that
applies structure to Hadoop data and enables querying the
data using a SQL-like language named HiveQL. Users can
plug custom mappers and reducers in HiveQL to express
complex data processing logic. In previous versions of Hive,
the performance is limited by the fact that HiveQL is
translated into MapReduce jobs to be executed on Hadoop
cluster. Expensive operations such as joins are translated
into multiple stages of MapReduce tasks that are executed
one by one. Each task reads inputs from disk and writes
intermediate outputs back to the disk. Recently, people have
tried to improve the performance of Hive from several
aspects: 1) the supports of new data types and sub-queries
are added to HiveQL, making it more and more similar to
the standard SQL; 2) advanced file formats such as ORC
File and custom SerDe (Serialization and De-Serialization)
are supported. ORC File is superior to RCFile [5] in terms
of compression ratio and scanning efficiency; 3) the new
version of Hive runs on Tez, which transform a query to
a complex directed-acyclic-graph (DAG) of tasks. Multiple
MapReduce jobs may be bundled in a single Tez job. In ad-
dition, Tez executor gathers some statistics about the tasks of
vertices of a DAG during runtime, and reconfigures the plan
at runtime, to optimize the query processing; 4) Hive now
uses a cost-based logical optimizer to select the best plans
for queries according to statistics of tables and columns. The
optimizer can optimize table join orders, construct bushy
join trees for star joins, and eliminate some cross products.
Currently, Hive supports [28] only equi-Join with available
joining algorithms such as multi-way join, common join,
map join, bucket map join, SMB join, skew join etc.; 5) Hive
applies vectorized query execution strategy, which greatly

reduces the CPU usage for many typical query operations.
A standard query executor processes a single row at a time.
Vectorized query execution runs operations by processing a
vector at a time. A table is partitioned into blocks, within
the block, each column is stored vectors and processed in a
tight loop.

2.3.2. Cloudera Impala. Cloudera Impala [14] uses its
own processing framework to execute queries, bypassing the
inefficient MapReduce computing model. Impala disperses
query plans instead of fitting them into a pipeline of map
and reduce tasks, thus enables parallelizing multiple stages
of a query to avoid the overhead of sort and shuffle if
these operations are unnecessary. Similar to MPP databases,
Impala does not materialize intermediate results to disks.
It avoids MapReduce startup time by running as a service.
Moreover, the execution engine tries to take advantage of the
modern techniques such as SSE (SSE4.2) instructions and
LLVM (Low Level Virtual Machine) to generate assembly
code for the running queries. Impala supports new columnar
storages of Parquet for higher performance of query inten-
sive workloads. It is aware of the disk location of blocks and
is able to schedule the order of processing blocks to keep all
disks busy. Impala supports two join algorithms: broadcast
join and partitioned join. When right hand side input is
small, it is broadcast to each node executing the join, and
the join is collocated with the left hand side input. For joins
involving two large inputs, Impala uses partitioned join, in
which both inputs are hash partitioned on join columns, and
dispatched to different nodes, join operations are conducted
on every node and the results are merged. Impala relies on
statistics of tables and columns to select the best plan for a
query.

According to Cloudera’s benchmarking results, for pure-
ly I/O bound queries, they typically see performance gains
in the range of 3-4X. For queries that require multiple
MapReduce phases or reduce-side joins in Hive, they see
a higher speedup. For queries with at least one join, they
have seen performance gains of 7-45X. If the data accessed
by the query is resident in the cache, the speedup can be
as more as 20X-90X over Hive even for simple aggregation
queries [14]. Worthy to mention is that, the comparison was
done on a previous version of Hive.

2.3.3. Spark SQL. An early version of Spark SQL [26],
called Shark [24], is a large-scale data warehouse system
built on top of Spark [29], designed to be compatible
with Apache Hive. Spark provides the fine granular lineage
based fault tolerance that is required by Shark for robust
query processing. Shark supports Hive’s query language,
meta store, serialization formats, and user-defined functions.
It leverages several optimization techniques, including in
memory column-oriented storage layout, dynamic mid query
re-planning of execution plan, which allows it to answer
HiveQL queries much faster than the early version of Hive
without modification to the existing data or queries. Spark
SQL improves Shark majorly in two ways [26]: 1) It offers
a declarative DataFrame API that seamlessly integrates re-

466

lational data processing with Spark’s procedural processing.
2) It includes a highly extensible optimizer, Catalyst, which
is built using features of the Scala programming language,
that allows it to easily add data sources, optimization rules,
and data types for domains such as machine learning.

3. Experimental Evaluation

This section reports the results of our benchmarking
study, as well as some analysis and comparison of the
performance of the benchmarked systems.

3.1. Hardware and Software Configuration

Experiments run on Renda Xing Cloud1 that currently
has 50 physical nodes. Each node has a memory of 48GB,
2 × 6 cores Intel Xeon E5645 CPU, and a disk storage of
6TB configured with RAID 5. By using OpenStack and
KVM, we are able to generate clusters of 8, 16 and 32
nodes respectively, for different settings of our experimental
study. Each virtual node has 4 cores and 24GB memory.
To reduce the impacts of virtualization on the performance
of the benchmarked systems, we manually guarantee that
no two virtual machines fall on the same physical node.
The configuration of hardwares and virtual nodes is listed
in Table 1.

TABLE 1. HARDWARE/VIRTUALIZATION CONFIGURATION

Components Configuration

CPU Intel Xeon E5645, 2.4 GHz, 4 cores virtualized via KVM

Memory 24 GB

Disk 500GB virtualized from Seagate SAS 2 TB, 7200RPM

Network Gigabit Ethernet

The versions of the benchmarked systems are given in
Table 2. The default parameters are typically applied to each
benchmarked system, with some of the important parameters
manually optimized for better performance. The systems of
Impala and Spark SQL have been tuned so that memory of
virtual machines can be fully utilized. Since column storage
has been verified to be more efficient than textual files by
other studies [9], [27], we directly apply columnar data
format for the tested systems.

TABLE 2. VERSIONS OF TESTED SYSTEMS

System Version File Format

Hive Hortonworks Hive-Tez V0.14 ORC File

Impala Cloudera Impala V2.1.3 Parquet

Spark SQL Spark V1.2 Parquet

3.2. Workloads

In our previous study [27] (that was done in the end of
2013), we revised some queries from the TPC-DS bench-
mark [30] so that they are not that complex to support

1. http://deke.ruc.edu.cn/yunyuyue.php

fast execution of analytical queries for the benchmarked
systems. However, the performance of the three systems
has been significantly improved recently, and they are more
robust than two years ago. As such, we select the TPC-H
benchmark, which has more types of analytical queries than
our previous study [27]. As for the tests are conducted on
clusters of 8-32 nodes, according to the query performance
on these queries, we generate three datasets of different
scales from the TPC-H benchmark: 100GB, 300GB, and
1TB.

3.3. Basic Performance Comparison

We first compare the three systems using 300GB data on
top of a cluster of 16 virtual nodes. The results are shown in
Table 3. Note that in all our experiments, a query labelled
as “3600+” indicates that the query takes more than one
hour (which is treated as time out. A run will be killed if
it lasts more than one hour in our study). For computing
the speedup of one system over another, we assume that a
time out query takes one hour to execute, which actually
inclines to the systems that have more overtime queries. A
run labelled as “–” indicates an system error occurs when
executing a query.

TABLE 3. PERFORMANCE COMPARISON FOR 16 NODES, 300GB DATA

(SECONDS)

Query Hive Impala SparkSQL Query Hive Impala SparkSQL

Q1 168.8 20.3 115.9 Q12 156.5 43.1 193.1

Q2 99.4 26.8 110.5 Q13 170.4 95.3 127.3

Q3 354.1 124.1 215.0 Q14 81.4 27.3 75.1

Q4 227.1 117.9 121.0 Q15 98.9 16.1 101.1

Q5 3600+ 286.3 3600+ Q16 136.8 56.1 82.1

Q6 54.0 11.0 47.3 Q17 712.1 303.2 842.8

Q7 527.0 180.1 669.0 Q18 582.0 241.7 654.1

Q8 784.1 506.9 821.6 Q19 114.8 31.6 77.4

Q9 725.0 3600+ 842.1 Q20 240.1 187.7 185.2

Q10 299.1 90.4 195.4 Q21 1235.3 868.3 1216.1

Q11 87.8 – 115.3 Q22 123.8 – 113.4

According to the results of Table 3, in general, each
system has one query time out (Q5 for Hive and Spark SQL,
and Q9 for Impala). In addition, Impala has two queries
failed (Q11 and Q22) because it does not support the cross
join operation. Among those queries that do not fail, we
compute the geometric mean of speedups of Impala and
Spark SQL over Hive. It shows that, in average (geometric
mean), Impala is 2.67X faster than Hive, and Spark SQL
is 1.03X faster than Hive. According to the results of Table
3, the performance of Impala is much better than that of
the other two. It is much faster especially on simple queries
(no joins or only one simple join) such as Q1, Q6, Q12,
and Q15. The performance of Spark SQL is similar to that
of Hive for many queries, which is verified by an average
speedup of 1.03 over Hive, and a maximal speedup of
around 1.9.

Compared to the results reported in our previous study
[27], we find that the performance of Hive has caught up
with Spark SQL/Shark. This is majorly because more and

467

more MPP database query optimization techniques are ap-
plied to Hive and Spark SQL as well. However, compared to
Impala, their performance still has a large room to improve.
The prospects of Hive and Spark SQL are still promising
as they are more fault tolerant than Impala, especially when
deployed in larger clusters.

3.4. Scalability Test

To test the scalability of the systems, we first fix the
data size as 300GB, and adjust the number of nodes from
8, to 16 and 32. We compute the speedups when queries
running on clusters of 16 and 32 nodes over those running
on 8 nodes. The results are shown in Figure 1. Note that
the speedups of overtime queries and failed queries when
running on 8 nodes are excluded in this test.

According to the results of Figure 1, we find that Spark
SQL benefits more from the enlargement of cluster size. For
example, when the number of nodes is enlarged from 8 to
16, Spark SQL achieves an average speedup of 2.39 (two
right most columns). On some queries, Spark SQL achieves
a speedup of almost 4.0 when the cluster size is enlarged in
4 times. This is majorly because the performance of Spark
SQL degrades dramatically when the load (data size per
node) is heavy, which happens when Spark SQL runs on the
cluster of 8 nodes. Comparatively, the performance of Hive
and Impala increases at a rate around 1.5 when the size of
cluster doubles. This is reasonable because the performance
gain often cannot catch up with the growth rate of cluster
sizes. However, when the cluster size is enlarged from 8 to
32, the average speedup of Impala is only 2.04, much lower
than that of the other two systems. It shows that Impala
benefits less from the enlargement of the cluster size, which
is very reasonable because it is architected more like an MPP
database, whose scalability is not as good as Hadoop-based
systems.

We then fix the cluster size as 32 nodes, and adjust the
data size from 100GB, to 300GB and 1TB. We compute
the speedups when queries run on 300GB and 1TB data
over those run on 100GB data. The results are shown in
Figure 2. We find that Spark SQL suffers a lot when it is
overloaded. For example, when the data size increases from
100GB to 300GB, the average speedup of SparkSQL is 0.42.
However, when the data size is raised to 1TB, Spark SQL
is overloaded. Six queries are time out, and the average
speedup (compared against the 100GB setting) drops to
0.08. This is consistent with the results of Figure 1 when
Spark SQL runs 300GB data on top of 8 nodes, which is
overloaded too. Comparatively, the performance of Hive is
not affected by the enlargement of data size as much as
Spark SQL. For 300GB data, the average speedup of Hive
is 0.62. For 1TB data, the average speedup is 0.32, much
higher than Spark SQL. It is also better than Impala. This
experiment shows that Hive fits larger data set more than
the other two systems.

We further compare the performance of the three sys-
tems under different settings of cluster size and node size.
The results are shown in Table 4. The load of each setting

���

���

���

���

���

��� ��� ��� ��� �	� �
� ��� ��� �� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ��� ���� ���� ���� �����

��
��
��

��
�	

�

�

�����������
�
������������������� ���������������������

���

���

���

���

���

��� ��� ��� ��� �	� �
� ��� ��� �� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ��� ���� ���� ���� �����

��
��
��

��
�	
��

�

���	�	��������
�
������������������� ���������������������

���

���

���

���

���

��� ��� ��� ��� �	� �
� ��� ��� �� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ��� ���� ���� ���� �����

	�
��
��

��
��
��

�

	���
	����������
�
������������������� ���������������������

Figure 1. Scalability test on 300GB data when adjusting the number of
nodes

basically increases from top to bottom. It is observed that,
as the load increases, the performance of Spark SQL drops
significantly. The superiority (speedup) of Impala over Hive
also drops as the cluster size and the data size increase,
showing that Hive may potentially work better on a larger
data set on top of a larger cluster.

TABLE 4. PERFORMANCE COMPARISON FOR DIFFERENT SETTINGS OF

CLUSTER SIZE AND DATA SIZE. A RESULT INDICATES: THE AVERAGE

SPEEDUP OVER HIVE (#TIME OUT/#FAILED)

#nodes datasize Hive Impala SparkSQL

32N 100GB 1.0 (1/0) 3.120 (0/2) 1.266 (1/0)

32N 300GB 1.0 (1/0) 2.623 (0/2) 0.962 (1/0)

16N 300GB 1.0 (1/0) 2.671 (1/2) 1.026 (1/0)

8N 300GB 1.0 (1/0) 2.590 (2/2) 0.665 (2/0)

32N 1TB 1.0 (2/0) 2.269 (2/2) 0.357 (6/0)

3.5. Case Study

To further investigate the performance of the bench-
marked systems, we select some queries of different types,
and show the detailed running time of major operators
executed by the benchmarked systems. In this subsection,
all experiments are conducted over 300GB data on top of a
cluster of 8 virtual nodes. Cases are selected to explain the
performance gap between the compared systems.

468

���

���

��� ��� ��� ��� ��� �	� �
� ��� ��� ���� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ���� ���� ���� ����

�
��
��

��
��

�

�

�	�����
������
���������������� ��������������

���

���

��� ��� ��� ��� ��� �	� �
� ��� ��� ���� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ���� ���� ���� ����

��
��
��

��
��
��

�

�
�������
�������
���������������� ��������������

���

���

��� ��� ��� ��� ��� �	� �
� ��� ��� ���� ���� ���� ���� ���� ���� ��	� ��
� ���� ���� ���� ���� ���� ����

��
��
��

��
��
��

�

�����������	
�����
���������������� ��������������

Figure 2. Scalability test under 32 nodes when adjusting data size

Q1: Figure 3 shows a case of an aggregate query over
single table, which also contains group-by and order-by
operators. The query Q1 is as follows:

select l returnflag, l linestatus, sum(l quantity) as sum qty, ...

from lineitem where
l shipdate ≤ date ’1998-09-02’

group by l returnflag, l linestatus

order by l returnflag, l linestatus;

We find that there will be only four data items after
group-by operations. However, Hive is not that smart in that
after filtering and group-by operations in the first map stage,
no aggregate operation is conducted. This leads to a large
intermediate result set that requires expensive shuffle cost.
Comparatively, Impala performs local aggregation during
the first stage, and therefore each node keeps only 4 group-
by data items after that stage. It further saves cost in the
follow-up stages because no MapReduce shuffle processes
are applied when exchanging intermediate results. Note that
on this query, the performance gap between Impala and Hive
is much larger (a speedup of 8.33X according to the results
of Table 3) when it is run on a cluster of 16 nodes.

Q12: Another case where Impala beats Hive is Q12,
which has a join over two tables. When investigating the
query plans of the two systems, we find that Hive applies
a shuffle-based sort merge join that requires an expensive
shuffle process because data from the Orders table (after the
first map stage) is still quite large (around 8.3 GB remaining
after the filter operation). However, the selectivity of the

�

Lineitem�

Group by�

�����

Filter�

�

��������	
��

Group by�

���������
���

���������
�	��

�����
���

�

Lineitem�

Group by�

Filter�

�

Group by�

�

����

Output file�

��������
����
�

����������
��	����

�����	���

�����������
������

��������	
��

�

����

Output file�

�����	���

����	�������

�������	� �!��

Figure 3. Q1: Hive VS. Impala. The overall time of a query is not the sum
of the running time of all its operators as they may be executed in pipeline.

Lineitem table is very high in the first stage (around 138MB
remaining after the filter operation). Impala wisely observes
this. It therefore broadcasts the intermediate results derived
from the Lineitem table, and applies a local hash join on
each node in the second stage. This avoids the expensive
sort operation required by sort merge join, which can be
verified by the performance gap in the first two stages of
Hive and Impala. The query Q12 is as follows:

select l shipmode,

sum(case when o orderpriority =’1-URGENT’ or o orderpriority =’2-

HIGH’ then 1 else 0 end) as high line count,...

from orders, lineitem where
o orderkey = l orderkey and l commitdate < l receiptdate and ...

group by l shipmode

order by l shipmode;

�

Orders�

�����

Filter�

�

�����

Merge join�

���	
��		
				"#��

���	$#��

Output file�

�

Lineitem�

�����

Filter�

�

Group by�

�

Order by�

���	%&$��

���	
��		
					%��

�

Orders�

Filter�

�

Hash join� ��
���	"%�'��

�

Lineitem�

Filter���
���		
		'�(��

��
���		
			%�	�

��
������		
				'(#���

�

Group by�

�

Group by�

��������	���

Limit�

��
���			
		"#��

�

Order by�

������

Output file�

��
������		
				(")	��

Sort(Top N)�

Broadcast�

�����	'*#�'��

 ������	*%�%��

���	
��		
				%"%��

Figure 4. Q12: Hive VS. Impala

Q13: Q13 is also a join over two tables, in which Spark
SQL is faster than Hive, and Impala is faster than Spark
SQL. The details of this query on the three systems are
shown in Figure 5. On this query, both Impala and Spark
SQL apply a hash join, and Hive applies a sorted merge
join. There are at least two reasons that Spark SQL is faster
than Hive on this query: 1) the usage of shuffle-based hash
join, which does not require to sort data in the map stage;
2) some operations have narrow dependency [29] that can
be executed on the same node without the need of shuffling
across nodes. The query Q13 is as follows:

select c count, count(*) as custdist from (

469

�

Customer�

�����

Filter�

�

�����

Merge join�

��������
����

���������
	
	��

�����	
���

Output file�

�

Orders�

�����

Filter�

�

Group by�

�

Order by�

�����	���

��������
���

�

Customer�

Filter�

�

Hash join�

�������	��

�

Orders�

Filter�

����������

�������
�����

����������
���

�

Group by�

�

Group by�

�����

Limit�

������
����

�

Order by�

������

Output file�

�����������
�������

Sort(Top N)�

�

Group by�

Sort�

�������
��

�

Group by�

�����������
������

���	�	�+
����

������	��!�!��

�

Customer�

Filter�

�

�����	���

Hash join�

��������
���

��������
����

Output file�

�

Orders�

Filter�

�����	���

�

Group by�

Order by�

Limit�

Shuffle�

���������	!�!����

�����	����

Figure 5. Q13: Hive VS. Impala VS. Spark SQL

select count(o orderkey) from
customer left outer join orders on

c custkey = o custkey and o comment not like ‘%spe-

cial%requests%’

group by c custkey
)as c orders (c custkey, c count)

group by c count

order by custdist desc, c count desc;

Although Impala and Spark SQL both apply a hash
join algorithm, their performance is quite different. This
is majorly because Impala uses an MPP style of hash join
which applies an in-memory data transfer of the intermediate
results. The shuffle-based hash join used by Spark SQL
however need to write and read the intermediate results to
and from the disk. Spark SQL and Hive have to pay the price
of shuffling intermediate results to achieve the inner-query
fault tolerance.

Q8: For the query Q8 (shown in Figure 6), which is very
complex, Hive outperforms Spark SQL significantly. For
such a complex query, Spark SQL simply applies shuffle-
based hash join for all join operations in the query plan-
ning tree. However, Hive wisely applies map-side join by
broadcasting the small table before the map operation of the
large table. By using map join, the output data in the map
phase can be significantly reduced, which may also help to
improve the performance of a further join operation very
much. For this example, Hive takes only 571 seconds for
the first map operation (scanning and filtering the data of
the Lineitem table, then performing the map join between
the filtered Lineitem and the broadcasted Supplier, which is
filtered before broadcasting.). Spark SQL takes 780 seconds
to scan and shuffle the Lineitem table. By looking closer at
runtime statistics, we find that the volume of data shuffled
is as large as around 153GB. For the join operation just
on top of it, Spark SQL takes as much as 1800 seconds.
It is apparent that, for joining between a very large table
and a relatively small table, shuffle based hash join is not
as efficient as broadcasting the small table for joining. This
case also explains the reason why Hive outperforms Spark
SQL on other complex queries such Q2, Q7, Q9. It is simply
because Hive applies a more advanced cost-based query
optimizer, that is able to choose join strategies adaptively.
The query Q8 is as follows:

select o year, ... from (

select extract(year from o orderdate) as o year, ...

from part, supplier, lineitem, orders, customer, nation, region

where
p partkey = l partkey and s suppkey = l suppkey

and l orderkey = o orderkey and o custkey = c custkey ...
) as all nations

group by o year order by o year;

Lineitem�

�

Group by�

����������

	
� �
�����

Sort(Top N)�
	
� �
�����

�

Supplier�

�����

Filter�

��������

�

Filter�

Map join�

Sort�

Output file�

�

Order by�

Limit�

��������

�Orders�

�����

Filter�

	
� �
������

�

Merge join�

Sort�

�

Map join�

Sort�

	
� �
������ Group by�

�

Nation�

�����

Filter�

�

Nation�

�����

Filter�

�

Customer�

�����

Filter�

��������

��������

��������

��������!�

Merge join�

��������

�

Part�

�����

Filter�

	
� �
�������

�

Merge join�

Sort�

�

Region�

�����

Filter�

�������

��������!�

��"
�������

�

Supplier�

Filter�

�

Hash join�

����������

�

Lineitem�

Filter�

�

Group by�

����������

Order by� 	
� �
�������

�

Hash join�

Group by�

Output file�

	
� �
����

Limit�

Shuffle�

TMP file�

�����������������

�

Part�

Filter�

�

Hash join�

TMP file�

Shuffle�

�

Orders�

Filter�

���������

���������

�

Customer�

Filter�

��������

�

Hash join�

TMP file�

�

Hash join�

TMP file�

Shuffle�

Shuffle�

Shuffle�

	
� �
������

	
� �
�������

	
� �
��������

	
� �
�����

�

Nation�

Filter�

����������

�

Hash join�

TMP file�

	
� �
����

�

Region�

Filter�

����������

�

Hash join�

TMP file�

Shuffle�

	
� �
�����

�

Nation�

Filter�

����������

Figure 6. Q8: Hive VS. SparkSQL

Q9: Q9 is another complex query that involves a join
of 6 tables. We find that Impala is overtime on this query.
A further study on the details of the query execution of
Impala shows that it broadcasts a large intermediate result
set of the Orders table by mistake. A better solution on this
join should apply a hash join. This shows that the cost-based
query optimizer of Impala still has room to improve.

3.6. Analysis

By analyzing the results and referring to the implemen-
tation of the systems. We have the following observations:

(1) Impala performs much better than Hive and Spark
SQL majorly because of its in-memory data transferring that
does not need to persist the intermediate results. However,
the superiority of Impala over Hive largely drops when the
load per node is heavier and the cluster size becomes larger.
Spark SQL performs a little better than Hive for lightweight
load. It is however much inferior to Hive when the load
per node is large enough. These phenomena indicates that
Hive is a more robust and reliable system when dealing with
larger data sets.

(2) A pipeline way of query processing improves the
performance of SQL-on-Hadoop systems remarkably. Hive-
Tez splits MapReduce jobs into fine-grained operations, and
bundle them in a Tez job. Similarly, Spark SQL combines
all local operations into a job stage. They all benefit from
saving the cost of persisting the intermediate results of query
processing.

(3) Compared to inferior performance of Hive in the
early literatures such as [9], [27], the performance of the
new version of Hive has improved a lot, which is owing to
the cost-based query optimization techniques and vectorized
query execution strategy employed by Hive. Currently Hive

470

even outperforms SparkSQL for many queries. As tradition-
al RDBMS, cost-based query optimization is also important
for SQL-on-Hadoop systems to improve the performance
for queries with join operations. We find that Hive has a
simple cost-based model to judge whether to use map join
(broadcast join) or shuffle-based sort merge join; Spark SQL
always uses shuffle-based hash join which is not efficient for
many cases, especially when one relation of a join is small
enough for achieving a broadcast join strategy; and Impala
blindly broadcasts right table for hash join when it doesn’t
have statistics information of the target tables. The query
optimizer of Impala sometimes badly estimates the result
size, which may lead to a poor query plan.

Our benchmarking study shows that different join strat-
egy leads to different performance. There will be a lot of
room to improve in query optimization of the benchmarked
systems.

4. Conclusion

In this paper, we firstly review efforts of SQL on Hadoop
systems in recent years. Then we test three representative
systems using the TPC-H benchmark. We find that by
applying state-of-the-art query processing techniques (such
as columnar storage, MPP architecture, join optimization,
and vectorized query execution) that have been extensively
studied by database community for many years, SQL-on-
Hadoop systems can largely improve their performance. It
is expected that with more advanced parallel database tech-
niques applied, the performance of SQL-on-Hadoop systems
can be further improved. Providing high performance SQL
analysis functionality to the data stored in HDFS will attract
more and more users to use SQL on Hadoop systems for
interactive analysis as an alternative of proprietary DBMSs.

Acknowledgments

The work is partially supported by the Ministry of
Science and Technology of China, National Key Research
and Development Program (No. 2016YFB1000702), the
NSF China under grants No. 61432006, No. 61170013, and
No. 61472426, and Science and Technology Department of
Guangdong Province under grant No.2015B010131015.

References

[1] W. Lang and J. M. Patel, “Energy management for mapreduce clusters,”
PVLDB, vol. 3, no. 1, pp. 129–139, 2010.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI, 2004, pp. 137–150.

[3] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel
data processing with mapreduce: a survey,” SIGMOD Record, vol. 40,
no. 4, pp. 11–20, 2011.

[4] S. Sakr, A. Liu, and A. G. Fayoumi, “The family of mapreduce and
large-scale data processing systems,” ACM Comput. Surv., vol. 46,
no. 1, p. 11, 2013.

[5] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile:
A fast and space-efficient data placement structure in mapreduce-based
warehouse systems,” in ICDE, 2011, pp. 1199–1208.

[6] “Hive,” http://hive.apache.org.

[7] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,
and M. Stonebraker, “A comparison of approaches to large-scale data
analysis,” in SIGMOD Conference, 2009, pp. 165–178.

[8] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang, “Can
the elephants handle the nosql onslaught?” PVLDB, vol. 5, no. 12, pp.
1712–1723, 2012.

[9] A. Floratou, U. F. Minhas, and F. Özcan, “Sql-on-Hadoop: Full circle
back to shared-nothing database architectures,” PVLDB, vol. 7, no. 12,
pp. 1295–1306, 2014.

[10] M. J. Franklin, “Making sense of big data with the berkeley data
analytics stack,” in WSDM, 2015, pp.1-2.

[11] M.-Y. Iu and W. Zwaenepoel, “Hadooptosql: a mapreduce query
optimizer,” in EuroSys, 2010, pp. 251–264.

[12] R. Lee, T. Luo, Y. Huai, F. Wang, Y. He, and X. Zhang, “Ysmart:
Yet another sql-to-mapreduce translator,” in ICDCS, 2011, pp. 25–36.

[13] “Stinger,” http://hortonworks.com/stinger/, 2014.

[14] “Cloudera impala,” http://blog.cloudera.com/blog/2012/10/cloudera-
impala-real-time-queries-in-apache-Hadoop-for-real, 2013.

[15] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and
A. Silberschatz, “Hadoopdb: An architectural hybrid of mapreduce and
dbms technologies for analytical workloads,” PVLDB, vol. 2, no. 1, pp.
922–933, 2009.

[16] “Jethro data,” http://jethrodata.com/product/, 2014.

[17] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lon-
ergan, J. Cohen, C. Welton, G. Sherry, and M. Bhandarkar, “Hawq:
a massively parallel processing sql engine in Hadoop,” in SIGMOD
Conference, 2014, pp. 1223–1234.

[18] “Citusdata,” http://citusdata.com/docs/SQL-on-Hadoop, 2015.

[19] “Rainstor,” http://rainstor.com/products/rainstor-database, 2015.

[20] “Drill proposal,” http://wiki.apache.org/incubator/DrillProposal, 2015.

[21] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-
Saborit, A. Avanes, M. Flasza, and J. Gramling, “Split query processing
in polybase,” in SIGMOD Conference, 2013, pp. 1255–1266.

[22] T. Argyros, “The enterprise approach to interactive sql on Hadoop
data: Teradata sql-h,” http://www.asterdata.com/blog/2013/04/the-
enterprise-approach-to-interactive-SQL-on-Hadoop-data-teradata-sql-
h, 2013.

[23] http://docs.oracle.com/cd/E37231 01/doc.20/e36961/sqlch.htm,
2013.

[24] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. S-
toica, “Shark: Sql and rich analytics at scale,” in SIGMOD Conference,
2013, pp. 13–24.

[25] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad, “Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing),” PVLDB, vol. 3, no. 1, pp. 518–529, 2010.

[26] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark
sql: Relational data processing in spark,” in SIGMOD Conference,
2015,pp.1383-1394.

[27] Y. Chen, X. Qin, H. Bian, J. Chen, Z. Dong, X. Du, Y. Gao, D. Liu,
J. Lu, and H. Zhang, “A study of sql-on-Hadoop systems,” in Big Data
Benchmarks, Performance Optimization, and Emerging Hardware - 4th
and 5th Workshops, BPOE 2014, Salt Lake City, USA, March 1, 2014
and Hangzhou, China, September 5, 2014, Revised Selected Papers,
2014, pp. 154–166.

[28] “Cost-based optimization in hive,” http-
s://cwiki.apache.org/confluence/
display/Hive/Cost-based+optimization+in+Hive, 2015.

[29] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in NS-
DI, 2012, pp. 15–28.

[30] R. O. Nambiar and M. Poess, “The making of tpc-ds,” in VLDB,
2006, pp. 1049–1058.

471

